Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

Identifieur interne : 001F41 ( Main/Exploration ); précédent : 001F40; suivant : 001F42

[The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

Auteurs : Ya-Mei Wang ; Shu-Ling Ma ; Li-Qun Feng

Source :

RBID : pubmed:25208386

Descripteurs français

English descriptors

Abstract

Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.

PubMed: 25208386


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].</title>
<author>
<name sortKey="Wang, Ya Mei" sort="Wang, Ya Mei" uniqKey="Wang Y" first="Ya-Mei" last="Wang">Ya-Mei Wang</name>
</author>
<author>
<name sortKey="Ma, Shu Ling" sort="Ma, Shu Ling" uniqKey="Ma S" first="Shu-Ling" last="Ma">Shu-Ling Ma</name>
</author>
<author>
<name sortKey="Feng, Li Qun" sort="Feng, Li Qun" uniqKey="Feng L" first="Li-Qun" last="Feng">Li-Qun Feng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25208386</idno>
<idno type="pmid">25208386</idno>
<idno type="wicri:Area/Main/Corpus">002013</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002013</idno>
<idno type="wicri:Area/Main/Curation">002013</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002013</idno>
<idno type="wicri:Area/Main/Exploration">002013</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].</title>
<author>
<name sortKey="Wang, Ya Mei" sort="Wang, Ya Mei" uniqKey="Wang Y" first="Ya-Mei" last="Wang">Ya-Mei Wang</name>
</author>
<author>
<name sortKey="Ma, Shu Ling" sort="Ma, Shu Ling" uniqKey="Ma S" first="Shu-Ling" last="Ma">Shu-Ling Ma</name>
</author>
<author>
<name sortKey="Feng, Li Qun" sort="Feng, Li Qun" uniqKey="Feng L" first="Li-Qun" last="Feng">Li-Qun Feng</name>
</author>
</analytic>
<series>
<title level="j">Guang pu xue yu guang pu fen xi = Guang pu</title>
<idno type="ISSN">1000-0593</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (MeSH)</term>
<term>Fungi (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Polysaccharides (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Soybean Oil (MeSH)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>Wood (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (MeSH)</term>
<term>Cellulose (MeSH)</term>
<term>Champignons (MeSH)</term>
<term>Huile de soja (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Polyosides (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (MeSH)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cellulose</term>
<term>Polysaccharides</term>
<term>Soybean Oil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fungi</term>
<term>Hot Temperature</term>
<term>Pinus</term>
<term>Populus</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bois</term>
<term>Cellulose</term>
<term>Champignons</term>
<term>Huile de soja</term>
<term>Pinus</term>
<term>Polyosides</term>
<term>Populus</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25208386</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1000-0593</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>34</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Guang pu xue yu guang pu fen xi = Guang pu</Title>
<ISOAbbreviation>Guang Pu Xue Yu Guang Pu Fen Xi</ISOAbbreviation>
</Journal>
<ArticleTitle>[The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].</ArticleTitle>
<Pagination>
<MedlinePgn>660-3</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ya-Mei</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Shu-Ling</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Li-Qun</ForeName>
<Initials>LQ</Initials>
</Author>
</AuthorList>
<Language>chi</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Guang Pu Xue Yu Guang Pu Fen Xi</MedlineTA>
<NlmUniqueID>9424805</NlmUniqueID>
<ISSNLinking>1000-0593</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8001-22-7</RegistryNumber>
<NameOfSubstance UI="D013024">Soybean Oil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="Y">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013024" MajorTopicYN="Y">Soybean Oil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="Y">Wood</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25208386</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Feng, Li Qun" sort="Feng, Li Qun" uniqKey="Feng L" first="Li-Qun" last="Feng">Li-Qun Feng</name>
<name sortKey="Ma, Shu Ling" sort="Ma, Shu Ling" uniqKey="Ma S" first="Shu-Ling" last="Ma">Shu-Ling Ma</name>
<name sortKey="Wang, Ya Mei" sort="Wang, Ya Mei" uniqKey="Wang Y" first="Ya-Mei" last="Wang">Ya-Mei Wang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25208386
   |texte=   [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25208386" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020